Athletes and their purported use of performance-enhancing drugs have dominated the sporting news in the last few months. The controversy seems to be particularly heated in the sport of baseball, with the Mitchell Report naming many famous players. Of particular interest is the accusation by Brian McNamee that Roger Clemens used performance-enhancing drugs to increase his performance. As statistics are readily available in the sport of baseball, I decided to perform a statistical analysis of Mr. Clemens’ performance before and after his alleged use of performance-enhancing drugs.

The field of probability and statistics has formal tests which can be used to determine if an average has changed. These tests are called “Hypothesis Tests” and can be used to help understand whether Roger Clemens’ performance changed before and after the period of alleged drug use. Before I explain the test, let me explain why we need formal Hypothesis tests.

Almost all data has some form of variation. If you don’t believe me, go outside and throw a baseball, football, or whatever kind of ball you prefer as far as you can 10 times. If you measure the distance of each throw, you will find that each of them goes a different distance. Additionally – and here is a key point – one of the 10 throws will be the longest. The problem is that we as humans tend to see this single point and draw conclusions that are not necessarily valid. For example, if the longest throw was one of the latter, then we might say that “we were just getting warmed up”. If the longest was one of the earlier throws, we might say that “our arm got tired at the end”. However, it is possible that the longest throw was simply random. Perhaps there isn’t anything “different” about the throw, it was just another throw in 10 that happened to go the farthest. We don’t tend to think this way. We want to be able to find assignable causes in data so that changes in performance can be explained, and are therefore not random.

What do I mean by an assignable cause? Go outside and throw 10 more balls, but this time throw using your left-hand (or your non-dominant hand). Unless you are different from the vast majority of the people on the planet, there will be a large difference between the distances you threw right-handed vs. left-handed. In this case, the assignable cause is that you changed hands. Changing from your dominant hand changed the distance that the ball went.

In the case of both Roger Clemens and Barry Bonds, the assignable cause would be the purported use of performance-enhancing drugs.

Put more simply, when Mr. Clemens and Mr. Bonds were allegedly taking performance-enhancing drugs, did this make them pitch or bat better? In order to test this theory, we can perform a formal hypothesis test.

To perform a hypothesis test, we start with two mutually exclusive hypotheses. Here’s an example: when someone is accused of a crime, we put them on trial to determine their innocence or guilt. In this classic case, the two possibilities are the defendant is not guilty (innocent of the crime) or the defendant is guilty. This is classically written as…

H_{0}: Defendant is ← Null Hypothesis

H_{1}: Defendant is Guilty ← Alternate Hypothesis

Unfortunately, our justice systems are not perfect. At times, we let the guilty go free and put the innocent in jail. The conclusion drawn can be different from the truth, and in these cases we have made an error. The table below has all four possibilities. Note that the columns represent the “True State of Nature” and reflect if the person is truly innocent or guilty. The rows represent the conclusion drawn by the judge or jury.

Two of the four possible outcomes are correct. If the truth is they are innocent and the conclusion drawn is innocent, then no error has been made. If the truth is they are guilty and we conclude they are guilty, again no error. However, the other two possibilities result in an error.

A Type I (read “Type one”) error is when the person is truly innocent but the jury finds them guilty. A Type II (read “Type two”) error is when a person is truly guilty but the jury finds him/her innocent. Many people find the distinction between the types of errors as unnecessary at first; perhaps we should just label them both as errors and get on with it. However, the distinction between the two types is extremely important. When we commit a Type I error, we put an innocent person in jail. When we commit a Type II error we let a guilty person go free. Which error is worse? The generally accepted position of society is that a Type I Error or putting an innocent person in jail is far worse than a Type II error or letting a guilty person go free. In fact, in the United States our burden of proof in criminal cases is established as “Beyond reasonable doubt”.

Another way to look at Type I vs. Type II errors is that a Type I error is the probability of overreacting and a Type II error is the probability of under reacting.

In statistics, we want to quantify the probability of a Type I and Type II error. The probability of a Type I Error is α (Greek letter “alpha”) and the probability of a Type II error is β (Greek letter “beta”). Without slipping too far into the world of theoretical statistics and Greek letters, let’s simplify this a bit. What if I said the probability of committing a Type I error was 20%? A more common way to express this would be that we stand a 20% chance of putting an innocent man in jail. Would this meet your requirement for “beyond reasonable doubt”? At 20% we stand a 1 in 5 chance of committing an error. To me, this is not sufficient evidence and so I would not conclude that he/she is guilty.

The formal calculation of the probability of Type I error is critical in the field of probability and statistics. However, the term "Probability of Type I Error" is not reader-friendly. For this reason, for the duration of the article, I will use the phrase "Chances of Getting it Wrong" instead of "Probability of Type I Error". I think that most people would agree that putting an innocent person in jail is "Getting it Wrong" as well as being easier for us to relate to. To help you get a better understanding of what this means, the table below shows some possible values for getting it wrong.

(Probability of Type I Error)

20% Chance

5% Chance

1% Chance

.01% Chance

1 in 5

1 in 20

1 in 100

1 in 10,000

Unfortunately, court trials do not come with calculations of committing a Type I error. The determination of “reasonable doubt” is much less quantitative. However, statistics does provide numerical values for two different sets of data. Instead of a hypothesis of guilt or innocence, let’s look at Mr. Clemens’ performance in the years that he was accused of using performance-enhancing drugs. Our hypothesis will be….

H0: Mr. Clemens pitched the same before and after 1998

H1: Mr. Clemens pitched different after 1998

I picked the year 1998 since Brian McNamee indicated he started giving Mr. Clemens performance-enhancing drugs in this year. The fact that Brian McNamee gave us the year makes the analysis far easier. It provides a clean break point for before and after. For the analysis of Mr. Clemens, I have included his before years as the years from 1984 to 1997 and the after years as 1998 to 2005. I didn’t include the years 2006 or 2007 as Mr. Clemens didn’t pitch for the full seasons. Thus, for the remainder of this article, Mr. Clemens’ before and after is defined as:

Before Alleged Drug Use - 1984 to 1997

After Alleged Drug Use -1998 to 2005

We need a better way to define “pitched better”; luckily, baseball keeps a wealth of statistics on pitchers and batters to give us a quantitative assessment. For pitchers, the most commonly used statistic seems to be ERA (earned run average). The lower the ERA, the better the pitcher. There are other statistics, such as ERA+, WHIP, and win percentage which we will get to in a moment. Mr. Clemens’ ERA before alleged drug use is 3.09 and his ERA after alleged drug use is 3.45. Remembering that a lower ERA is better, his performance after the alleged use is worse than before. The question still remains: did Mr. Clemens’ performance change (for better or worse) after the alleged drug use? Is the difference in ERA from 3.09 to 3.45 due to some assignable cause or is it simply random variation? For this data, the hypothesis test is defined as..

H_{0}: Mr. Clemens’ average ERA was the same before and after

H_{1}: Mr. Clemens’ average ERA was different after alleged drug use

The hypothesis test for this type of data is called a “t-Test”. A t-Test is commonly used to determine if two different data sets have a different average. In our example, we would like to know if the average ERA is different before and after the alleged drug use. The chances of getting it wrong using Mr. Clemens’ ERA data before and after alleged drug use is 35%. (If you are interested in the data behind this article or how to calculate the probability of Type I error click here.) If we conclude that Mr. Clemens’ ERAs changed before and after 1998, we would have a 35% chance of being wrong or roughly a 1 in 3 chance of being incorrect. Most scientists require a level of proof such that the chances of getting it wrong are less than 5% before they will conclude that there is a difference in average. A 35% chance of getting it wrong is too big of a chance and I would conclude that there was no difference in performance. A simple graph called a dot plot can help us compare Mr. Clemens’ performance before and after 1998.

In the graph below, the blue dots represent Mr. Clemens’ ERA in the years before 1998, while the green triangles represent the ERA in the years after 1998. Visually, it does not appear that there is a difference in the average ERA, and the t-Test confirms this.

Based upon this analysis, I would conclude that Mr. Clemens’ average ERA did not change before and after 1998 and that any differences were due to random variation.

While Mr. Clemens’ ERA doesn’t appear to have changed, we can get a clearer picture if we look at statistics other than ERA. Pitchers are also evaluated using the statistic Adjusted ERA+ which adjusts the ERA for ballparks. Since some ballparks favor batters and others pitchers, the ERA+ statistic was created to adjust for this potential bias and normalize pitchers in a more equitable manner. An ERA+ of 100 means that a pitcher performed equal to the average pitcher, with any value over 100 being better than average and any value under 100 being worse than average. Note that for the raw statistic ERA lower is better, and for ERA+ bigger is better. We can also use Walks Plus Hits Per Inning Pitched (WHIP) which is yet another baseball statistic. The lower the WHIP, the better the pitcher.

The table below has the before and after analysis for Mr. Clemens and the associated chances of getting it wrong (Type I error). While Mr. Clemens’ performance was slightly worse in after years, the difference is very small and likely the result of random variation.

| ||||

Before(1984-1997) | After(1998-2005) | Chances of Getting it Wrong (Type I Error) | Conclusion | |

ERA (lower better) | 3.09 | 3.45 | 35% | No change in performance |

Adjusted ERA+ (higher better) | 152 | 140 | 49% | No change in performance |

WHIP (lower better) | 1.168 | 1.227 | 35% | No change in performance |

Based upon the analysis of Roger Clemens' ERA, Adjusted ERA+, and WHIP statistics, there is insufficient statistical evidence to suggest that his average performance changed in the years before and after the alleged use of performance-enhancing drugs.

This analysis is limited in scope to Mr. Clemens’ performance in the years prior to and after alleged drug use. I am sure many will argue that his performance should have dropped in his later years due to the natural effects of aging. In fact, Mr. Clemens’ performance did drop; however, the drop was not statistically significant and it appears that his performance before and after alleged drug use was approximately the same.

Is it possible that Mr. Clemens took performance-enhancing drugs? Yes. Assuming for the moment that he did take performance-enhancing drugs, did it increase his performance over previous years? No.

There is little, if any, evidence that Roger Clemens' performance was increased in the years after the alleged use. Put another way, if Mr. Clemens did take performance-enhancing drugs, he should get his money back.

Many people will likely disagree on the years that I chose to analyze Mr. Clemens’ records. In this section, I will explain my rationale for picking the dates of before and after alleged drug use. The more important concept is that I picked the dates and then afterward performed the statistical analysis. This is distinctly different from looking through the players’ statistics and then picking which years to include.

According to the Mitchell Report, Brian McNamee claims to have given Mr. Clemens steroids in 1998 and human growth hormone (HGH) in 2000 and 2001. I made the assumption that the benefits of these drugs would not be instant on/instant off. In other words, if Mr. Clemens did take HGH in 2000 and 2001 he would continue to see performance gains from this into 2002 and on. Perhaps the benefits of HGH would subside quickly or perhaps they would continue for years. Mr. Clemens didn’t play a full season in the year 2006, and therefore this made a convenient break point. Undoubtedly some will want to analyze the data using a smaller period, perhaps stopping in the year 2002 or 2003. I should note that Mr. Clemens’ career best ERA was in 2005. The inclusion of the 2005 data improves his “after” statistics and yet he still didn’t have a performance increase.

If you are statistically inclined you may have some additional questions. The following section will likely be useful.

- The use of the t-Test assumes normality. The sample sizes were relatively small, making rejection of Normality unlikely. All test of normality failed to reject at the .05 level.
- Additional testing using non-parametric supports the analysis.
- For some of the statistics, a Test of Proportions could be used instead of a t-Test.
- All analysis was done using a two-sided test (the hypothesis was that the average was different). A similar analysis could be performed using a single-sided test (the hypothesis would be that the average is greater than or less than). I chose a two-sided, as my entry position was that I wanted to know if there was a difference. For completeness, I did an additional analysis on all tests and they support the previous conclusions.
- The power (Beta or probability of Type II error) is weak due to the limited sample sizes. With more data we might find evidence to suggest that Mr. Clemens’ performance did in fact decrease in the after period.

This article has turned out to be one of the most controversial I have ever written. Over the past couple of years, I've received many comments and emails, most of them from people who believe that Roger Clemens is guilty regardless of the statistics. Some of their common objections are...

1. The drugs allowed Roger Clemens to pitch longer. As he aged, he should have gotten worse faster. If you look at the data, he did in fact get worse in the alleged drug use years. Note to Roger: in your next lifetime, get worse faster.

2. "The difference wasn't obvious because he is a pitcher, batters get more benefit from drugs". There's actually some data to support that pitching really didn't change much during the alleged drug years. However, if drug use doesn't change pitching, then why do we really care?

3. This is my favorite... "I just believe he is guilty!" I cannot tell you how many normally logical people have expressed the fundamental "feeling" that he is guilty. The controversy over Roger Clemens has led to him testifying before Congress, his indictments for obstruction of Congress, and a federal trial which ended on June 18, 2012. Clemens was found not guilty of all six counts of lying to Congress when he testified that he never took performance-enhancing drugs. If you detect a smug sense of satisfaction as you read this, you're right.

4. Many people want to see the hypothesis test result. Below is the t-Test from Quantum XL. The key words are "Insufficient Evidence" next to the means are not equal. It means exactly what the court found on June 18, 2012. We don't have enough evidence.

My motivation for writing this article is to provide an interesting example of Hypothesis testing. I am not a baseball fan and frankly wish this would all come to an end so we can get more football news coverage. I have been to one Major League baseball game which was in Chicago in 2006 and happened to coincide with a family vacation. We left after 4 innings. I do not know Roger Clemens nor am I associated with him in any way.

Click here to learn more about Quantum XL